## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE, dev = "png")
## ----load, eval=TRUE, message=FALSE-------------------------------------------
library(celda)
## ----sce_import, eval = FALSE-------------------------------------------------
# library(singleCellTK)
# sce <- importCellRanger(sampleDirs = c("path/to/sample1/", "path/to/sample2/"))
## ----sce_import_raw, eval = FALSE---------------------------------------------
# sce.raw <- importCellRanger(sampleDirs = c("path/to/sample1/", "path/to/sample2/"), dataType = "raw")
## ----load_10X, eval=TRUE, message=FALSE---------------------------------------
# Load PBMC data
library(TENxPBMCData)
sce <- TENxPBMCData("pbmc4k")
colnames(sce) <- paste(sce$Sample, sce$Barcode, sep = "_")
rownames(sce) <- rowData(sce)$Symbol_TENx
counts(sce) <- as(counts(sce), "dgCMatrix")
## ----decontX, eval=TRUE, message=FALSE----------------------------------------
sce <- decontX(sce)
## ----decontX_background, eval=FALSE, message=FALSE----------------------------
# sce <- decontX(sce, background = sce.raw)
## ----UMAP_Clusters------------------------------------------------------------
umap <- reducedDim(sce, "decontX_UMAP")
plotDimReduceCluster(x = sce$decontX_clusters,
dim1 = umap[, 1], dim2 = umap[, 2])
## ----plot_decon---------------------------------------------------------------
plotDecontXContamination(sce)
## ----plot_feature, message=FALSE----------------------------------------------
library(scater)
sce <- logNormCounts(sce)
plotDimReduceFeature(as.matrix(logcounts(sce)),
dim1 = umap[, 1],
dim2 = umap[, 2],
features = c("CD3D", "CD3E", "GNLY",
"LYZ", "S100A8", "S100A9",
"CD79A", "CD79B", "MS4A1"),
exactMatch = TRUE)
## ----barplotCounts------------------------------------------------------------
markers <- list(Tcell_Markers = c("CD3E", "CD3D"),
Bcell_Markers = c("CD79A", "CD79B", "MS4A1"),
Monocyte_Markers = c("S100A8", "S100A9", "LYZ"),
NKcell_Markers = "GNLY")
cellTypeMappings <- list(Tcells = 2, Bcells = 5, Monocytes = 1, NKcells = 6)
plotDecontXMarkerPercentage(sce,
markers = markers,
groupClusters = cellTypeMappings,
assayName = "counts")
## ----barplotDecontCounts------------------------------------------------------
plotDecontXMarkerPercentage(sce,
markers = markers,
groupClusters = cellTypeMappings,
assayName = "decontXcounts")
## ----barplotBoth--------------------------------------------------------------
plotDecontXMarkerPercentage(sce,
markers = markers,
groupClusters = cellTypeMappings,
assayName = c("counts", "decontXcounts"))
## ----plotDecontXMarkerExpression----------------------------------------------
plotDecontXMarkerExpression(sce,
markers = markers[["Monocyte_Markers"]],
groupClusters = cellTypeMappings,
ncol = 3)
## ----plot_norm_counts, eval = TRUE--------------------------------------------
library(scater)
sce <- logNormCounts(sce,
exprs_values = "decontXcounts",
name = "decontXlogcounts")
plotDecontXMarkerExpression(sce,
markers = markers[["Monocyte_Markers"]],
groupClusters = cellTypeMappings,
ncol = 3,
assayName = c("logcounts", "decontXlogcounts"))
## ----findDelta----------------------------------------------------------------
metadata(sce)$decontX$estimates$all_cells$delta
## ----newDecontX, eval=TRUE, message=FALSE-------------------------------------
sce.delta <- decontX(sce, delta = c(9, 20), estimateDelta = FALSE)
plot(sce$decontX_contamination, sce.delta$decontX_contamination,
xlab = "DecontX estimated priors",
ylab = "Setting priors to estimate higher contamination")
abline(0, 1, col = "red", lwd = 2)
## ----seurat_create, eval = FALSE----------------------------------------------
# # Read counts from CellRanger output
# library(Seurat)
# counts <- Read10X("sample/outs/filtered_feature_bc_matrix/")
#
# # Create a SingleCellExperiment object and run decontX
# sce <- SingleCellExperiment(list(counts = counts))
# sce <- decontX(sce)
#
# # Create a Seurat object from a SCE with decontX results
# seuratObject <- CreateSeuratObject(round(decontXcounts(sce)))
## ----seurat_raw, eval = FALSE-------------------------------------------------
# counts.raw <- Read10X("sample/outs/raw_feature_bc_matrix/")
# sce.raw <- SingleCellExperiment(list(counts = counts.raw))
# sce <- decontX(sce, background = sce.raw)
## ----seurat_create2, eval = FALSE---------------------------------------------
# counts <- GetAssayData(object = seuratObject, slot = "counts")
# sce <- SingleCellExperiment(list(counts = counts))
# sce <- decontX(sce)
# seuratObj[["decontXcounts"]] <- CreateAssayObject(counts = decontXcounts(sce))
## -----------------------------------------------------------------------------
sessionInfo()