
I Am ALTREP (And So Can You!)

Gabriel Becker, Work Joint with L Tierney, M Lawrence and T
Kalibera



The Year: R v0-3.4 (1997- 2018)



You Know What The R C API Needs?

~ Me probably, circa 2016
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An Incomplete History of (Not) Duplicating
Data in R < 3.6.0
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This Worked Well, Obviously
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with R internals

I Full duplication on modifying of atomic vector attributes
I No way for vectors to retain information about themselves

I Sortedness, presence of NAs, etc
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Atomic Vectors, By Way Of
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ALTREP
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I Contains method table
I R_altrep_inherits only API provided, no getter/setter

I Currently Implemented as CONS cells, but this may change
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If Someone on R-Core Tells You Not To Do Something in
C Code
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Sortedness in ALTREP

enum {SORTED_DECR_NA_1ST = -2,
SORTED_DECR = -1,
UNKNOWN_SORTEDNESS = INT_MIN, /*INT_MIN is NA_INTEGER! */
SORTED_INCR = 1,
SORTED_INCR_NA_1ST = 2,
KNOWN_UNSORTED = 0};



Is_sorted

I int Is_sorted(SEXP)

I Always return an enum value by name
I Always return UNKNOWN_SORTEDNESS once DATAPTR has been

called with writeable true
I KNOWN_UNSORTED only if vector has > 3 distinct values
I and is not sorted in either directoin
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Creating ALTREP Class
static void InitVWindowRealClass(DllInfo *dll)
{

R_altrep_class_t cls =
R_make_altreal_class("vwindow_real", "vectorwindow", dll);

/* ALTREP methods */
R_set_altrep_Inspect_method(cls, vwindow_Inspect);
/* etc */

/* ALTVEC methods */
R_set_altvec_Dataptr_method(cls, vwindow_Dataptr);
/* etc */

/* ALTREAL methods */
R_set_altreal_Elt_method(cls, vwindow_real_Elt);
/* etc */

}



ALTREP Writing Guidelines

I Be extremely careful and conservative

I metadata returned must be correct 100% of the time
I Use the API even in ALTREP method code

I Methods which return SEXPs can return NULL to decline to
do do something

I Exception: Duplicate

I Be very wary of violating pass-by-value semantics

I Mark things as not-mutable to get read-only shared access to
memory
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ALTREP Writing Specifics

I Don’t write methods for the _EX variants

I Default calls down to non _EX variant
I Duplicate method MUST return a SEXP which can be

modified by interaction with writeable dataptr

I or fail by throwing an error

I Write functions/macros which abstract details of whats in
data1/data2

I Always use those even in your own methods

I Do not write C code which calls R_altrep_data* or
especially R_set_altrep_data* outside of ALTREP methods
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Accessing the Data



Accessing Full Data (Integer Vector)

I INTEGER - returns int * to full data in array form

I must always succeed or throw e.g. memory error regardless of
ALTREPness

I (*) INTEGER0 - efficiently return pointer for non-ALTREPs
I (*) INTEGER_RO - returns const pointer
I (*) INTEGER_OR_NULL - returns NULL pointer if ALTREP

“prefers not to” populate full data array

(*) indicates additions for ALTREP support
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AFTER INTEGER

I modifications in the addressed memory must be reflected in R
object

I This can’t be detected
I ALTREP representation/metdata is invalidated
I Often data2 of ALTREP object stores standard vector SEXP

once this happens

I Further calls to INTEGER, etc just hit that instead

I INTEGER_RO and INTEGER_OR_NULL prevent this destructive
access

I Should be used in your C code where possible
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Retrieving Partial Data

I (*) INTEGER_ELT - return c value (int, double) for single
data element

I (*) INTEGER_GET_REGION - populate provided buffer with
values from contiguous region

I Copies data so not ALTREP destructive
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ALTREP-Safe Full Data Access
(include/R_ext/Itermacros.h)

I ITERATE_BY_REGION

I Grabs full dataptr if possible via *_OR_NULL
I Wraps repeated *_GET_REGION calls
I ALTREP safe
I Allows for efficient tight loop over region pointer

I ITERATE_BY_REGION0

I Always uses repeated *_GET_REGION chunks

I ITERATE_BY_REGION_PARTIAL(|0)

I Same as above but specify starting position and count
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An Example - which Internals
(Part of) the C code implementing the which R function:

int ioffset = 1;
int *buf = (int *) R_alloc(len, sizeof(int));
/* use iteration macros to be ALTREP safe <snip> */
ITERATE_BY_REGION(v, ptr, idx, nb, int, LOGICAL, {

for(int i = 0; i < nb; i++) {
if(ptr[i] == TRUE) {

buf[j] = ioffset + i; // offset has +1 built in
j++;

}

}
ioffset += nb; // move to beginning of next buffer

});

len = j;
// buf has ints in it and we're returning ints, <snip>
PROTECT(ans = allocVector(INTSXP, len));
if(len) memcpy(INTEGER(ans), buf, sizeof(int) * len);
}



Example ALTREP packages

https://github.com/ALTREP-examples

https://github.com/ALTREP-examples
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Full List of ALTREP Methods



ALTREP Class Methods (All ALTREP Types)

I UnserializeEX
I Unserialize
I Serialized_state
I DuplicateEX
I Duplicate
I Coerce
I Inspect
I Length



ALTVEC Class Methods (Vectors)

ALTREP methods, plus

I Dataptr
I Dataptr_or_null
I Extract_subset



ALTINTEGER, ALTREAL Class Methods

ALTVEC methods, plus

I Elt
I Get_region
I Is_sorted
I No_NA
I Sum
I Min
I Max



ALTLOGICAL Class Methods

ALTVEC methods, plus

I Elt
I Get_region
I Is_sorted
I No_NA
I Sum



ALTRAW/ALTCOMPLEX Class Methods

ALTVEC methods, plus

I Elt
I Get_region



ALTSTRING

ALTVEC methods, plus

I Elt
I Set_elt
I Is_sorted
I No_NA
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