
I Am ALTREP (And So Can You!)

Gabriel Becker, Work Joint with L Tierney, M Lawrence and T
Kalibera



The Year: R v0-3.4 (1997- 2018)



You Know What The R C API Needs?

~ Me probably, circa 2016



An R Vector Viewed From C

Two primary sections

I SEXP header

I Length
I SEXP type
I Various other info

I Payload (Data)

I The values of the vector elements



An R Vector Viewed From C

Two primary sections

I SEXP header
I Length

I SEXP type
I Various other info

I Payload (Data)

I The values of the vector elements



An R Vector Viewed From C

Two primary sections

I SEXP header
I Length
I SEXP type

I Various other info
I Payload (Data)

I The values of the vector elements



An R Vector Viewed From C

Two primary sections

I SEXP header
I Length
I SEXP type
I Various other info

I Payload (Data)

I The values of the vector elements



An R Vector Viewed From C

Two primary sections

I SEXP header
I Length
I SEXP type
I Various other info

I Payload (Data)

I The values of the vector elements



An R Vector Viewed From C

Two primary sections

I SEXP header
I Length
I SEXP type
I Various other info

I Payload (Data)
I The values of the vector elements



Tightly Coupled

Atomic vector objects were tightly coupled with their data

I header+payload contiguous in memory

I payload data in simple array format



Tightly Coupled

Atomic vector objects were tightly coupled with their data

I header+payload contiguous in memory
I payload data in simple array format



An Incomplete History of (Not) Duplicating
Data in R < 3.6.0



Copy on Write

I Pass-by-value semantics

I R behaves as if it duplicates data every time it is

I Assigned to a new variable
I Passed passed as argument to function

I Without actually duplicating
I Only matters how many pointers we have to it if it changes

I Duplicate then, and only then



Copy on Write

I Pass-by-value semantics
I R behaves as if it duplicates data every time it is

I Assigned to a new variable
I Passed passed as argument to function

I Without actually duplicating
I Only matters how many pointers we have to it if it changes

I Duplicate then, and only then



Copy on Write

I Pass-by-value semantics
I R behaves as if it duplicates data every time it is

I Assigned to a new variable

I Passed passed as argument to function
I Without actually duplicating

I Only matters how many pointers we have to it if it changes

I Duplicate then, and only then



Copy on Write

I Pass-by-value semantics
I R behaves as if it duplicates data every time it is

I Assigned to a new variable
I Passed passed as argument to function

I Without actually duplicating
I Only matters how many pointers we have to it if it changes

I Duplicate then, and only then



Copy on Write

I Pass-by-value semantics
I R behaves as if it duplicates data every time it is

I Assigned to a new variable
I Passed passed as argument to function

I Without actually duplicating

I Only matters how many pointers we have to it if it changes

I Duplicate then, and only then



Copy on Write

I Pass-by-value semantics
I R behaves as if it duplicates data every time it is

I Assigned to a new variable
I Passed passed as argument to function

I Without actually duplicating
I Only matters how many pointers we have to it if it changes

I Duplicate then, and only then



Copy on Write

I Pass-by-value semantics
I R behaves as if it duplicates data every time it is

I Assigned to a new variable
I Passed passed as argument to function

I Without actually duplicating
I Only matters how many pointers we have to it if it changes

I Duplicate then, and only then



Shallow Duplication

I Lists, S4 objects are “separable”

I Modifying elements forces duplication of only those elements
I Introduced in R 3.1.0, Michael Lawrence and R-Core
I Modifying attributes duplicates only the “container” list



Shallow Duplication

I Lists, S4 objects are “separable”
I Modifying elements forces duplication of only those elements

I Introduced in R 3.1.0, Michael Lawrence and R-Core
I Modifying attributes duplicates only the “container” list



Shallow Duplication

I Lists, S4 objects are “separable”
I Modifying elements forces duplication of only those elements
I Introduced in R 3.1.0, Michael Lawrence and R-Core

I Modifying attributes duplicates only the “container” list



Shallow Duplication

I Lists, S4 objects are “separable”
I Modifying elements forces duplication of only those elements
I Introduced in R 3.1.0, Michael Lawrence and R-Core
I Modifying attributes duplicates only the “container” list



Deep Duplication

I Atomic vectors were not separable

I Modifying any element forces full data duplication
I Modifying attributes forces full data duplication



Deep Duplication

I Atomic vectors were not separable
I Modifying any element forces full data duplication

I Modifying attributes forces full data duplication



Deep Duplication

I Atomic vectors were not separable
I Modifying any element forces full data duplication
I Modifying attributes forces full data duplication



This Worked Well, Obviously



But there were limitations

I No way for compressed/shared/out of core data to interact
with R internals

I Full duplication on modifying of atomic vector attributes
I No way for vectors to retain information about themselves

I Sortedness, presence of NAs, etc



But there were limitations

I No way for compressed/shared/out of core data to interact
with R internals

I Full duplication on modifying of atomic vector attributes

I No way for vectors to retain information about themselves

I Sortedness, presence of NAs, etc



But there were limitations

I No way for compressed/shared/out of core data to interact
with R internals

I Full duplication on modifying of atomic vector attributes
I No way for vectors to retain information about themselves

I Sortedness, presence of NAs, etc



But there were limitations

I No way for compressed/shared/out of core data to interact
with R internals

I Full duplication on modifying of atomic vector attributes
I No way for vectors to retain information about themselves

I Sortedness, presence of NAs, etc



The Idea of ALTREP



Atomic Vectors, By Way Of



Design Intent

I Generalize storage of data payload for atomic vector SEXPs

I Implement “Smart Vectors”
I Decouple data and attributes
I Completely transparent at the R level



Design Intent

I Generalize storage of data payload for atomic vector SEXPs
I Implement “Smart Vectors”

I Decouple data and attributes
I Completely transparent at the R level



Design Intent

I Generalize storage of data payload for atomic vector SEXPs
I Implement “Smart Vectors”
I Decouple data and attributes

I Completely transparent at the R level



Design Intent

I Generalize storage of data payload for atomic vector SEXPs
I Implement “Smart Vectors”
I Decouple data and attributes
I Completely transparent at the R level



Generalized Data Storage

I Location

I In memory
I Out of core
I Owned by another process/object

I Format

I Efficient representations
I E.g., compact integer/real sequences



Generalized Data Storage

I Location
I In memory

I Out of core
I Owned by another process/object

I Format

I Efficient representations
I E.g., compact integer/real sequences



Generalized Data Storage

I Location
I In memory
I Out of core

I Owned by another process/object
I Format

I Efficient representations
I E.g., compact integer/real sequences



Generalized Data Storage

I Location
I In memory
I Out of core
I Owned by another process/object

I Format

I Efficient representations
I E.g., compact integer/real sequences



Generalized Data Storage

I Location
I In memory
I Out of core
I Owned by another process/object

I Format

I Efficient representations
I E.g., compact integer/real sequences



Generalized Data Storage

I Location
I In memory
I Out of core
I Owned by another process/object

I Format
I Efficient representations

I E.g., compact integer/real sequences



Generalized Data Storage

I Location
I In memory
I Out of core
I Owned by another process/object

I Format
I Efficient representations
I E.g., compact integer/real sequences



Smart Vectors



Smart Vectors

I Know metadata about themselves

I sortedness
I lack of NAs

I Makes certain computations very easy
I Fully compatible with R internals



Smart Vectors

I Know metadata about themselves
I sortedness

I lack of NAs
I Makes certain computations very easy
I Fully compatible with R internals



Smart Vectors

I Know metadata about themselves
I sortedness
I lack of NAs

I Makes certain computations very easy
I Fully compatible with R internals



Smart Vectors

I Know metadata about themselves
I sortedness
I lack of NAs

I Makes certain computations very easy

I Fully compatible with R internals



Smart Vectors

I Know metadata about themselves
I sortedness
I lack of NAs

I Makes certain computations very easy
I Fully compatible with R internals



Decoupling Attributes and Data

I No reason to copy data when just changing object class

I Originally “stretch goal”

I Implemented by Luke for 3.6.0 for vectors > certain size



Decoupling Attributes and Data

I No reason to copy data when just changing object class
I Originally “stretch goal”

I Implemented by Luke for 3.6.0 for vectors > certain size



Decoupling Attributes and Data

I No reason to copy data when just changing object class
I Originally “stretch goal”

I Implemented by Luke for 3.6.0 for vectors > certain size



How to Spot an ALTREP - R Code Edition



ALTREP R Objects Are Just R Objects

I R code should never know the difference

I “normal” C code should not know the difference

I exception: hooks to call ALTREP methods



ALTREP R Objects Are Just R Objects

I R code should never know the difference
I “normal” C code should not know the difference

I exception: hooks to call ALTREP methods



ALTREP R Objects Are Just R Objects

I R code should never know the difference
I “normal” C code should not know the difference

I exception: hooks to call ALTREP methods



How?

I ALTREP framework implements an abstraction underneath
traditional R C API

I Generalizes whats underneath the API

I Without changing how data are accessed

I Compatible with all C code which uses the API
I Compatible with R internals



How?

I ALTREP framework implements an abstraction underneath
traditional R C API
I Generalizes whats underneath the API

I Without changing how data are accessed
I Compatible with all C code which uses the API
I Compatible with R internals



How?

I ALTREP framework implements an abstraction underneath
traditional R C API
I Generalizes whats underneath the API

I Without changing how data are accessed

I Compatible with all C code which uses the API
I Compatible with R internals



How?

I ALTREP framework implements an abstraction underneath
traditional R C API
I Generalizes whats underneath the API

I Without changing how data are accessed
I Compatible with all C code which uses the API

I Compatible with R internals



How?

I ALTREP framework implements an abstraction underneath
traditional R C API
I Generalizes whats underneath the API

I Without changing how data are accessed
I Compatible with all C code which uses the API
I Compatible with R internals



The Deets



ALTREP



One Bit To Rule Them All

I Named bit alt in header struct that SEXP is an ALTREP

I ALTREP(x) function checks the bit
I SETALTREP(x,v) not provided . . . don’t do that



One Bit To Rule Them All

I Named bit alt in header struct that SEXP is an ALTREP
I ALTREP(x) function checks the bit

I SETALTREP(x,v) not provided . . . don’t do that



One Bit To Rule Them All

I Named bit alt in header struct that SEXP is an ALTREP
I ALTREP(x) function checks the bit
I SETALTREP(x,v) not provided . . . don’t do that



All ALTREP Objects are defined by 3 SEXP fields

I Data 1

I R_altrep_data1 and R_set_altrep_data1
I “Usually” the alternative representant

I Data 2

I R_altrep_data2 and R_set_altrep_data2
I “Often” placeholder for “Expanded” version

I ALTREP Class

I Contains method table
I R_altrep_inherits only API provided, no getter/setter

I Currently Implemented as CONS cells, but this may change
without warning



All ALTREP Objects are defined by 3 SEXP fields

I Data 1
I R_altrep_data1 and R_set_altrep_data1

I “Usually” the alternative representant
I Data 2

I R_altrep_data2 and R_set_altrep_data2
I “Often” placeholder for “Expanded” version

I ALTREP Class

I Contains method table
I R_altrep_inherits only API provided, no getter/setter

I Currently Implemented as CONS cells, but this may change
without warning



All ALTREP Objects are defined by 3 SEXP fields

I Data 1
I R_altrep_data1 and R_set_altrep_data1
I “Usually” the alternative representant

I Data 2

I R_altrep_data2 and R_set_altrep_data2
I “Often” placeholder for “Expanded” version

I ALTREP Class

I Contains method table
I R_altrep_inherits only API provided, no getter/setter

I Currently Implemented as CONS cells, but this may change
without warning



All ALTREP Objects are defined by 3 SEXP fields

I Data 1
I R_altrep_data1 and R_set_altrep_data1
I “Usually” the alternative representant

I Data 2

I R_altrep_data2 and R_set_altrep_data2
I “Often” placeholder for “Expanded” version

I ALTREP Class

I Contains method table
I R_altrep_inherits only API provided, no getter/setter

I Currently Implemented as CONS cells, but this may change
without warning



All ALTREP Objects are defined by 3 SEXP fields

I Data 1
I R_altrep_data1 and R_set_altrep_data1
I “Usually” the alternative representant

I Data 2
I R_altrep_data2 and R_set_altrep_data2

I “Often” placeholder for “Expanded” version
I ALTREP Class

I Contains method table
I R_altrep_inherits only API provided, no getter/setter

I Currently Implemented as CONS cells, but this may change
without warning



All ALTREP Objects are defined by 3 SEXP fields

I Data 1
I R_altrep_data1 and R_set_altrep_data1
I “Usually” the alternative representant

I Data 2
I R_altrep_data2 and R_set_altrep_data2
I “Often” placeholder for “Expanded” version

I ALTREP Class

I Contains method table
I R_altrep_inherits only API provided, no getter/setter

I Currently Implemented as CONS cells, but this may change
without warning



All ALTREP Objects are defined by 3 SEXP fields

I Data 1
I R_altrep_data1 and R_set_altrep_data1
I “Usually” the alternative representant

I Data 2
I R_altrep_data2 and R_set_altrep_data2
I “Often” placeholder for “Expanded” version

I ALTREP Class

I Contains method table
I R_altrep_inherits only API provided, no getter/setter

I Currently Implemented as CONS cells, but this may change
without warning



All ALTREP Objects are defined by 3 SEXP fields

I Data 1
I R_altrep_data1 and R_set_altrep_data1
I “Usually” the alternative representant

I Data 2
I R_altrep_data2 and R_set_altrep_data2
I “Often” placeholder for “Expanded” version

I ALTREP Class
I Contains method table

I R_altrep_inherits only API provided, no getter/setter
I Currently Implemented as CONS cells, but this may change

without warning



All ALTREP Objects are defined by 3 SEXP fields

I Data 1
I R_altrep_data1 and R_set_altrep_data1
I “Usually” the alternative representant

I Data 2
I R_altrep_data2 and R_set_altrep_data2
I “Often” placeholder for “Expanded” version

I ALTREP Class
I Contains method table
I R_altrep_inherits only API provided, no getter/setter

I Currently Implemented as CONS cells, but this may change
without warning



All ALTREP Objects are defined by 3 SEXP fields

I Data 1
I R_altrep_data1 and R_set_altrep_data1
I “Usually” the alternative representant

I Data 2
I R_altrep_data2 and R_set_altrep_data2
I “Often” placeholder for “Expanded” version

I ALTREP Class
I Contains method table
I R_altrep_inherits only API provided, no getter/setter

I Currently Implemented as CONS cells, but this may change
without warning



How R Internals Interact With Vectors



Overview

I Access data (payload)

I Modify dataˆˆ
I Access length
I Coerce to another SEXP type
I Duplicate
I (Un)Serialize



Overview

I Access data (payload)
I Modify dataˆˆ

I Access length
I Coerce to another SEXP type
I Duplicate
I (Un)Serialize



Overview

I Access data (payload)
I Modify dataˆˆ
I Access length

I Coerce to another SEXP type
I Duplicate
I (Un)Serialize



Overview

I Access data (payload)
I Modify dataˆˆ
I Access length
I Coerce to another SEXP type

I Duplicate
I (Un)Serialize



Overview

I Access data (payload)
I Modify dataˆˆ
I Access length
I Coerce to another SEXP type
I Duplicate

I (Un)Serialize



Overview

I Access data (payload)
I Modify dataˆˆ
I Access length
I Coerce to another SEXP type
I Duplicate
I (Un)Serialize



ALTREP Classes

Define Methods Which

I Support all of these actions

I Interact with the alternative representation
I Provide “escape-hatch” to create non-ALTREP version of

themselves

I Or throw error when they would need to

I Remember, ALTREPS should be passable to all R internal
functions



ALTREP Classes

Define Methods Which

I Support all of these actions
I Interact with the alternative representation

I Provide “escape-hatch” to create non-ALTREP version of
themselves

I Or throw error when they would need to

I Remember, ALTREPS should be passable to all R internal
functions



ALTREP Classes

Define Methods Which

I Support all of these actions
I Interact with the alternative representation
I Provide “escape-hatch” to create non-ALTREP version of

themselves

I Or throw error when they would need to
I Remember, ALTREPS should be passable to all R internal

functions



ALTREP Classes

Define Methods Which

I Support all of these actions
I Interact with the alternative representation
I Provide “escape-hatch” to create non-ALTREP version of

themselves
I Or throw error when they would need to

I Remember, ALTREPS should be passable to all R internal
functions



ALTREP Classes

Define Methods Which

I Support all of these actions
I Interact with the alternative representation
I Provide “escape-hatch” to create non-ALTREP version of

themselves
I Or throw error when they would need to

I Remember, ALTREPS should be passable to all R internal
functions



Select ALTREP Class Methods



We Are Going Way Down



We Are Going Way Down

I Always use provided accessor functions

I Never poke around at bits the API doesn’t provide access to
I The API is defined as what is documented in Writing R

Extensions

I Exception is ALTREP things, not documented there yet
I Only things starting with R_altrep or R_set_altrep

I Always respect MAYBE_SHARED

I Your responsibility to duplicate before modification if it returns
true

I Don’t define USE_RINTERNALS



We Are Going Way Down

I Always use provided accessor functions
I Never poke around at bits the API doesn’t provide access to

I The API is defined as what is documented in Writing R
Extensions

I Exception is ALTREP things, not documented there yet
I Only things starting with R_altrep or R_set_altrep

I Always respect MAYBE_SHARED

I Your responsibility to duplicate before modification if it returns
true

I Don’t define USE_RINTERNALS



We Are Going Way Down

I Always use provided accessor functions
I Never poke around at bits the API doesn’t provide access to
I The API is defined as what is documented in Writing R

Extensions

I Exception is ALTREP things, not documented there yet
I Only things starting with R_altrep or R_set_altrep

I Always respect MAYBE_SHARED

I Your responsibility to duplicate before modification if it returns
true

I Don’t define USE_RINTERNALS



We Are Going Way Down

I Always use provided accessor functions
I Never poke around at bits the API doesn’t provide access to
I The API is defined as what is documented in Writing R

Extensions
I Exception is ALTREP things, not documented there yet

I Only things starting with R_altrep or R_set_altrep
I Always respect MAYBE_SHARED

I Your responsibility to duplicate before modification if it returns
true

I Don’t define USE_RINTERNALS



We Are Going Way Down

I Always use provided accessor functions
I Never poke around at bits the API doesn’t provide access to
I The API is defined as what is documented in Writing R

Extensions
I Exception is ALTREP things, not documented there yet
I Only things starting with R_altrep or R_set_altrep

I Always respect MAYBE_SHARED

I Your responsibility to duplicate before modification if it returns
true

I Don’t define USE_RINTERNALS



We Are Going Way Down

I Always use provided accessor functions
I Never poke around at bits the API doesn’t provide access to
I The API is defined as what is documented in Writing R

Extensions
I Exception is ALTREP things, not documented there yet
I Only things starting with R_altrep or R_set_altrep

I Always respect MAYBE_SHARED

I Your responsibility to duplicate before modification if it returns
true

I Don’t define USE_RINTERNALS



We Are Going Way Down

I Always use provided accessor functions
I Never poke around at bits the API doesn’t provide access to
I The API is defined as what is documented in Writing R

Extensions
I Exception is ALTREP things, not documented there yet
I Only things starting with R_altrep or R_set_altrep

I Always respect MAYBE_SHARED
I Your responsibility to duplicate before modification if it returns

true

I Don’t define USE_RINTERNALS



We Are Going Way Down

I Always use provided accessor functions
I Never poke around at bits the API doesn’t provide access to
I The API is defined as what is documented in Writing R

Extensions
I Exception is ALTREP things, not documented there yet
I Only things starting with R_altrep or R_set_altrep

I Always respect MAYBE_SHARED
I Your responsibility to duplicate before modification if it returns

true
I Don’t define USE_RINTERNALS



If Someone on R-Core Tells You Not To Do Something in
C Code



Duplicate

I SEXP Duplicate(SEXP x, Rboolean deep)

I MUST return a SEXP which is modifiable via DATAPTR or fail
I No matter what.
I Yes, even you.



Duplicate

I SEXP Duplicate(SEXP x, Rboolean deep)
I MUST return a SEXP which is modifiable via DATAPTR or fail

I No matter what.
I Yes, even you.



Duplicate

I SEXP Duplicate(SEXP x, Rboolean deep)
I MUST return a SEXP which is modifiable via DATAPTR or fail
I No matter what.

I Yes, even you.



Duplicate

I SEXP Duplicate(SEXP x, Rboolean deep)
I MUST return a SEXP which is modifiable via DATAPTR or fail
I No matter what.
I Yes, even you.



Dataptr (Mandatory No Default)

I void *Dataptr(SEXP x, Rboolean writeable) - Access
full data pointer

I Must always return ptr to full data in array form (or fail)
I if writeable,

I modifications to array data must be reflected in R object
I any metadata (sortedness, No_NA) must be dropped/set to

unknown
I Often just duplicate into std SEXP vector and use that from

now on



Dataptr (Mandatory No Default)

I void *Dataptr(SEXP x, Rboolean writeable) - Access
full data pointer
I Must always return ptr to full data in array form (or fail)

I if writeable,

I modifications to array data must be reflected in R object
I any metadata (sortedness, No_NA) must be dropped/set to

unknown
I Often just duplicate into std SEXP vector and use that from

now on



Dataptr (Mandatory No Default)

I void *Dataptr(SEXP x, Rboolean writeable) - Access
full data pointer
I Must always return ptr to full data in array form (or fail)

I if writeable,

I modifications to array data must be reflected in R object
I any metadata (sortedness, No_NA) must be dropped/set to

unknown
I Often just duplicate into std SEXP vector and use that from

now on



Dataptr (Mandatory No Default)

I void *Dataptr(SEXP x, Rboolean writeable) - Access
full data pointer
I Must always return ptr to full data in array form (or fail)

I if writeable,
I modifications to array data must be reflected in R object

I any metadata (sortedness, No_NA) must be dropped/set to
unknown

I Often just duplicate into std SEXP vector and use that from
now on



Dataptr (Mandatory No Default)

I void *Dataptr(SEXP x, Rboolean writeable) - Access
full data pointer
I Must always return ptr to full data in array form (or fail)

I if writeable,
I modifications to array data must be reflected in R object
I any metadata (sortedness, No_NA) must be dropped/set to

unknown

I Often just duplicate into std SEXP vector and use that from
now on



Dataptr (Mandatory No Default)

I void *Dataptr(SEXP x, Rboolean writeable) - Access
full data pointer
I Must always return ptr to full data in array form (or fail)

I if writeable,
I modifications to array data must be reflected in R object
I any metadata (sortedness, No_NA) must be dropped/set to

unknown
I Often just duplicate into std SEXP vector and use that from

now on



Dataptr_or_null

I const void *Dataptr_or_null(SEXP x) - Access full data
ptr “if thats ok”

I Return full data ptr if already available
I E.g., if Dataptr was prev. called with writeable as TRUE
I If not already available, return
I NULL if your altrep class “doesn’t want to” populate full data

array
I pointer to full data array



Dataptr_or_null

I const void *Dataptr_or_null(SEXP x) - Access full data
ptr “if thats ok”
I Return full data ptr if already available

I E.g., if Dataptr was prev. called with writeable as TRUE
I If not already available, return
I NULL if your altrep class “doesn’t want to” populate full data

array
I pointer to full data array



Dataptr_or_null

I const void *Dataptr_or_null(SEXP x) - Access full data
ptr “if thats ok”
I Return full data ptr if already available
I E.g., if Dataptr was prev. called with writeable as TRUE

I If not already available, return
I NULL if your altrep class “doesn’t want to” populate full data

array
I pointer to full data array



Dataptr_or_null

I const void *Dataptr_or_null(SEXP x) - Access full data
ptr “if thats ok”
I Return full data ptr if already available
I E.g., if Dataptr was prev. called with writeable as TRUE
I If not already available, return

I NULL if your altrep class “doesn’t want to” populate full data
array

I pointer to full data array



Dataptr_or_null

I const void *Dataptr_or_null(SEXP x) - Access full data
ptr “if thats ok”
I Return full data ptr if already available
I E.g., if Dataptr was prev. called with writeable as TRUE
I If not already available, return
I NULL if your altrep class “doesn’t want to” populate full data

array

I pointer to full data array



Dataptr_or_null

I const void *Dataptr_or_null(SEXP x) - Access full data
ptr “if thats ok”
I Return full data ptr if already available
I E.g., if Dataptr was prev. called with writeable as TRUE
I If not already available, return
I NULL if your altrep class “doesn’t want to” populate full data

array
I pointer to full data array



Elt

I int Elt(SEXP x, R_xlen_t i)

I Return value of vector at single position



Elt

I int Elt(SEXP x, R_xlen_t i)
I Return value of vector at single position



Sortedness in ALTREP

enum {SORTED_DECR_NA_1ST = -2,
SORTED_DECR = -1,
UNKNOWN_SORTEDNESS = INT_MIN, /*INT_MIN is NA_INTEGER! */
SORTED_INCR = 1,
SORTED_INCR_NA_1ST = 2,
KNOWN_UNSORTED = 0};



Is_sorted

I int Is_sorted(SEXP)

I Always return an enum value by name
I Always return UNKNOWN_SORTEDNESS once DATAPTR has been

called with writeable true
I KNOWN_UNSORTED only if vector has > 3 distinct values
I and is not sorted in either directoin



Is_sorted

I int Is_sorted(SEXP)
I Always return an enum value by name

I Always return UNKNOWN_SORTEDNESS once DATAPTR has been
called with writeable true

I KNOWN_UNSORTED only if vector has > 3 distinct values
I and is not sorted in either directoin



Is_sorted

I int Is_sorted(SEXP)
I Always return an enum value by name
I Always return UNKNOWN_SORTEDNESS once DATAPTR has been

called with writeable true

I KNOWN_UNSORTED only if vector has > 3 distinct values
I and is not sorted in either directoin



Is_sorted

I int Is_sorted(SEXP)
I Always return an enum value by name
I Always return UNKNOWN_SORTEDNESS once DATAPTR has been

called with writeable true
I KNOWN_UNSORTED only if vector has > 3 distinct values

I and is not sorted in either directoin



Is_sorted

I int Is_sorted(SEXP)
I Always return an enum value by name
I Always return UNKNOWN_SORTEDNESS once DATAPTR has been

called with writeable true
I KNOWN_UNSORTED only if vector has > 3 distinct values
I and is not sorted in either directoin



Creating ALTREP Class
static void InitVWindowRealClass(DllInfo *dll)
{

R_altrep_class_t cls =
R_make_altreal_class("vwindow_real", "vectorwindow", dll);

/* ALTREP methods */
R_set_altrep_Inspect_method(cls, vwindow_Inspect);
/* etc */

/* ALTVEC methods */
R_set_altvec_Dataptr_method(cls, vwindow_Dataptr);
/* etc */

/* ALTREAL methods */
R_set_altreal_Elt_method(cls, vwindow_real_Elt);
/* etc */

}



ALTREP Writing Guidelines

I Be extremely careful and conservative

I metadata returned must be correct 100% of the time
I Use the API even in ALTREP method code

I Methods which return SEXPs can return NULL to decline to
do do something

I Exception: Duplicate

I Be very wary of violating pass-by-value semantics

I Mark things as not-mutable to get read-only shared access to
memory



ALTREP Writing Guidelines

I Be extremely careful and conservative
I metadata returned must be correct 100% of the time

I Use the API even in ALTREP method code
I Methods which return SEXPs can return NULL to decline to

do do something

I Exception: Duplicate

I Be very wary of violating pass-by-value semantics

I Mark things as not-mutable to get read-only shared access to
memory



ALTREP Writing Guidelines

I Be extremely careful and conservative
I metadata returned must be correct 100% of the time
I Use the API even in ALTREP method code

I Methods which return SEXPs can return NULL to decline to
do do something

I Exception: Duplicate

I Be very wary of violating pass-by-value semantics

I Mark things as not-mutable to get read-only shared access to
memory



ALTREP Writing Guidelines

I Be extremely careful and conservative
I metadata returned must be correct 100% of the time
I Use the API even in ALTREP method code

I Methods which return SEXPs can return NULL to decline to
do do something

I Exception: Duplicate
I Be very wary of violating pass-by-value semantics

I Mark things as not-mutable to get read-only shared access to
memory



ALTREP Writing Guidelines

I Be extremely careful and conservative
I metadata returned must be correct 100% of the time
I Use the API even in ALTREP method code

I Methods which return SEXPs can return NULL to decline to
do do something
I Exception: Duplicate

I Be very wary of violating pass-by-value semantics

I Mark things as not-mutable to get read-only shared access to
memory



ALTREP Writing Guidelines

I Be extremely careful and conservative
I metadata returned must be correct 100% of the time
I Use the API even in ALTREP method code

I Methods which return SEXPs can return NULL to decline to
do do something
I Exception: Duplicate

I Be very wary of violating pass-by-value semantics

I Mark things as not-mutable to get read-only shared access to
memory



ALTREP Writing Guidelines

I Be extremely careful and conservative
I metadata returned must be correct 100% of the time
I Use the API even in ALTREP method code

I Methods which return SEXPs can return NULL to decline to
do do something
I Exception: Duplicate

I Be very wary of violating pass-by-value semantics
I Mark things as not-mutable to get read-only shared access to

memory



ALTREP Writing Specifics

I Don’t write methods for the _EX variants

I Default calls down to non _EX variant
I Duplicate method MUST return a SEXP which can be

modified by interaction with writeable dataptr

I or fail by throwing an error

I Write functions/macros which abstract details of whats in
data1/data2

I Always use those even in your own methods

I Do not write C code which calls R_altrep_data* or
especially R_set_altrep_data* outside of ALTREP methods



ALTREP Writing Specifics

I Don’t write methods for the _EX variants
I Default calls down to non _EX variant

I Duplicate method MUST return a SEXP which can be
modified by interaction with writeable dataptr

I or fail by throwing an error

I Write functions/macros which abstract details of whats in
data1/data2

I Always use those even in your own methods

I Do not write C code which calls R_altrep_data* or
especially R_set_altrep_data* outside of ALTREP methods



ALTREP Writing Specifics

I Don’t write methods for the _EX variants
I Default calls down to non _EX variant

I Duplicate method MUST return a SEXP which can be
modified by interaction with writeable dataptr

I or fail by throwing an error
I Write functions/macros which abstract details of whats in

data1/data2

I Always use those even in your own methods

I Do not write C code which calls R_altrep_data* or
especially R_set_altrep_data* outside of ALTREP methods



ALTREP Writing Specifics

I Don’t write methods for the _EX variants
I Default calls down to non _EX variant

I Duplicate method MUST return a SEXP which can be
modified by interaction with writeable dataptr
I or fail by throwing an error

I Write functions/macros which abstract details of whats in
data1/data2

I Always use those even in your own methods

I Do not write C code which calls R_altrep_data* or
especially R_set_altrep_data* outside of ALTREP methods



ALTREP Writing Specifics

I Don’t write methods for the _EX variants
I Default calls down to non _EX variant

I Duplicate method MUST return a SEXP which can be
modified by interaction with writeable dataptr
I or fail by throwing an error

I Write functions/macros which abstract details of whats in
data1/data2

I Always use those even in your own methods
I Do not write C code which calls R_altrep_data* or

especially R_set_altrep_data* outside of ALTREP methods



ALTREP Writing Specifics

I Don’t write methods for the _EX variants
I Default calls down to non _EX variant

I Duplicate method MUST return a SEXP which can be
modified by interaction with writeable dataptr
I or fail by throwing an error

I Write functions/macros which abstract details of whats in
data1/data2
I Always use those even in your own methods

I Do not write C code which calls R_altrep_data* or
especially R_set_altrep_data* outside of ALTREP methods



ALTREP Writing Specifics

I Don’t write methods for the _EX variants
I Default calls down to non _EX variant

I Duplicate method MUST return a SEXP which can be
modified by interaction with writeable dataptr
I or fail by throwing an error

I Write functions/macros which abstract details of whats in
data1/data2
I Always use those even in your own methods

I Do not write C code which calls R_altrep_data* or
especially R_set_altrep_data* outside of ALTREP methods



R Internal Data Access API



Accessing the Data



Accessing Full Data (Integer Vector)

I INTEGER - returns int * to full data in array form

I must always succeed or throw e.g. memory error regardless of
ALTREPness

I (*) INTEGER0 - efficiently return pointer for non-ALTREPs
I (*) INTEGER_RO - returns const pointer
I (*) INTEGER_OR_NULL - returns NULL pointer if ALTREP

“prefers not to” populate full data array

(*) indicates additions for ALTREP support



Accessing Full Data (Integer Vector)

I INTEGER - returns int * to full data in array form
I must always succeed or throw e.g. memory error regardless of

ALTREPness

I (*) INTEGER0 - efficiently return pointer for non-ALTREPs
I (*) INTEGER_RO - returns const pointer
I (*) INTEGER_OR_NULL - returns NULL pointer if ALTREP

“prefers not to” populate full data array

(*) indicates additions for ALTREP support



Accessing Full Data (Integer Vector)

I INTEGER - returns int * to full data in array form
I must always succeed or throw e.g. memory error regardless of

ALTREPness
I (*) INTEGER0 - efficiently return pointer for non-ALTREPs

I (*) INTEGER_RO - returns const pointer
I (*) INTEGER_OR_NULL - returns NULL pointer if ALTREP

“prefers not to” populate full data array

(*) indicates additions for ALTREP support



Accessing Full Data (Integer Vector)

I INTEGER - returns int * to full data in array form
I must always succeed or throw e.g. memory error regardless of

ALTREPness
I (*) INTEGER0 - efficiently return pointer for non-ALTREPs
I (*) INTEGER_RO - returns const pointer

I (*) INTEGER_OR_NULL - returns NULL pointer if ALTREP
“prefers not to” populate full data array

(*) indicates additions for ALTREP support



Accessing Full Data (Integer Vector)

I INTEGER - returns int * to full data in array form
I must always succeed or throw e.g. memory error regardless of

ALTREPness
I (*) INTEGER0 - efficiently return pointer for non-ALTREPs
I (*) INTEGER_RO - returns const pointer
I (*) INTEGER_OR_NULL - returns NULL pointer if ALTREP

“prefers not to” populate full data array

(*) indicates additions for ALTREP support



AFTER INTEGER

I modifications in the addressed memory must be reflected in R
object

I This can’t be detected
I ALTREP representation/metdata is invalidated
I Often data2 of ALTREP object stores standard vector SEXP

once this happens

I Further calls to INTEGER, etc just hit that instead

I INTEGER_RO and INTEGER_OR_NULL prevent this destructive
access

I Should be used in your C code where possible



AFTER INTEGER

I modifications in the addressed memory must be reflected in R
object
I This can’t be detected

I ALTREP representation/metdata is invalidated
I Often data2 of ALTREP object stores standard vector SEXP

once this happens

I Further calls to INTEGER, etc just hit that instead

I INTEGER_RO and INTEGER_OR_NULL prevent this destructive
access

I Should be used in your C code where possible



AFTER INTEGER

I modifications in the addressed memory must be reflected in R
object
I This can’t be detected
I ALTREP representation/metdata is invalidated

I Often data2 of ALTREP object stores standard vector SEXP
once this happens

I Further calls to INTEGER, etc just hit that instead

I INTEGER_RO and INTEGER_OR_NULL prevent this destructive
access

I Should be used in your C code where possible



AFTER INTEGER

I modifications in the addressed memory must be reflected in R
object
I This can’t be detected
I ALTREP representation/metdata is invalidated
I Often data2 of ALTREP object stores standard vector SEXP

once this happens

I Further calls to INTEGER, etc just hit that instead
I INTEGER_RO and INTEGER_OR_NULL prevent this destructive

access

I Should be used in your C code where possible



AFTER INTEGER

I modifications in the addressed memory must be reflected in R
object
I This can’t be detected
I ALTREP representation/metdata is invalidated
I Often data2 of ALTREP object stores standard vector SEXP

once this happens
I Further calls to INTEGER, etc just hit that instead

I INTEGER_RO and INTEGER_OR_NULL prevent this destructive
access

I Should be used in your C code where possible



AFTER INTEGER

I modifications in the addressed memory must be reflected in R
object
I This can’t be detected
I ALTREP representation/metdata is invalidated
I Often data2 of ALTREP object stores standard vector SEXP

once this happens
I Further calls to INTEGER, etc just hit that instead

I INTEGER_RO and INTEGER_OR_NULL prevent this destructive
access

I Should be used in your C code where possible



AFTER INTEGER

I modifications in the addressed memory must be reflected in R
object
I This can’t be detected
I ALTREP representation/metdata is invalidated
I Often data2 of ALTREP object stores standard vector SEXP

once this happens
I Further calls to INTEGER, etc just hit that instead

I INTEGER_RO and INTEGER_OR_NULL prevent this destructive
access
I Should be used in your C code where possible



Retrieving Partial Data

I (*) INTEGER_ELT - return c value (int, double) for single
data element

I (*) INTEGER_GET_REGION - populate provided buffer with
values from contiguous region

I Copies data so not ALTREP destructive



Retrieving Partial Data

I (*) INTEGER_ELT - return c value (int, double) for single
data element

I (*) INTEGER_GET_REGION - populate provided buffer with
values from contiguous region

I Copies data so not ALTREP destructive



Retrieving Partial Data

I (*) INTEGER_ELT - return c value (int, double) for single
data element

I (*) INTEGER_GET_REGION - populate provided buffer with
values from contiguous region
I Copies data so not ALTREP destructive



How Not To Talk To ALTREPs

I INTEGER (often) destroys aspects of ALTREPness

I INTEGER_ELT in tight loop painfully slow



How Not To Talk To ALTREPs

I INTEGER (often) destroys aspects of ALTREPness
I INTEGER_ELT in tight loop painfully slow



ALTREP-Safe Full Data Access
(include/R_ext/Itermacros.h)

I ITERATE_BY_REGION

I Grabs full dataptr if possible via *_OR_NULL
I Wraps repeated *_GET_REGION calls
I ALTREP safe
I Allows for efficient tight loop over region pointer

I ITERATE_BY_REGION0

I Always uses repeated *_GET_REGION chunks

I ITERATE_BY_REGION_PARTIAL(|0)

I Same as above but specify starting position and count



ALTREP-Safe Full Data Access
(include/R_ext/Itermacros.h)

I ITERATE_BY_REGION
I Grabs full dataptr if possible via *_OR_NULL

I Wraps repeated *_GET_REGION calls
I ALTREP safe
I Allows for efficient tight loop over region pointer

I ITERATE_BY_REGION0

I Always uses repeated *_GET_REGION chunks

I ITERATE_BY_REGION_PARTIAL(|0)

I Same as above but specify starting position and count



ALTREP-Safe Full Data Access
(include/R_ext/Itermacros.h)

I ITERATE_BY_REGION
I Grabs full dataptr if possible via *_OR_NULL
I Wraps repeated *_GET_REGION calls

I ALTREP safe
I Allows for efficient tight loop over region pointer

I ITERATE_BY_REGION0

I Always uses repeated *_GET_REGION chunks

I ITERATE_BY_REGION_PARTIAL(|0)

I Same as above but specify starting position and count



ALTREP-Safe Full Data Access
(include/R_ext/Itermacros.h)

I ITERATE_BY_REGION
I Grabs full dataptr if possible via *_OR_NULL
I Wraps repeated *_GET_REGION calls
I ALTREP safe

I Allows for efficient tight loop over region pointer
I ITERATE_BY_REGION0

I Always uses repeated *_GET_REGION chunks

I ITERATE_BY_REGION_PARTIAL(|0)

I Same as above but specify starting position and count



ALTREP-Safe Full Data Access
(include/R_ext/Itermacros.h)

I ITERATE_BY_REGION
I Grabs full dataptr if possible via *_OR_NULL
I Wraps repeated *_GET_REGION calls
I ALTREP safe
I Allows for efficient tight loop over region pointer

I ITERATE_BY_REGION0

I Always uses repeated *_GET_REGION chunks

I ITERATE_BY_REGION_PARTIAL(|0)

I Same as above but specify starting position and count



ALTREP-Safe Full Data Access
(include/R_ext/Itermacros.h)

I ITERATE_BY_REGION
I Grabs full dataptr if possible via *_OR_NULL
I Wraps repeated *_GET_REGION calls
I ALTREP safe
I Allows for efficient tight loop over region pointer

I ITERATE_BY_REGION0

I Always uses repeated *_GET_REGION chunks
I ITERATE_BY_REGION_PARTIAL(|0)

I Same as above but specify starting position and count



ALTREP-Safe Full Data Access
(include/R_ext/Itermacros.h)

I ITERATE_BY_REGION
I Grabs full dataptr if possible via *_OR_NULL
I Wraps repeated *_GET_REGION calls
I ALTREP safe
I Allows for efficient tight loop over region pointer

I ITERATE_BY_REGION0
I Always uses repeated *_GET_REGION chunks

I ITERATE_BY_REGION_PARTIAL(|0)

I Same as above but specify starting position and count



ALTREP-Safe Full Data Access
(include/R_ext/Itermacros.h)

I ITERATE_BY_REGION
I Grabs full dataptr if possible via *_OR_NULL
I Wraps repeated *_GET_REGION calls
I ALTREP safe
I Allows for efficient tight loop over region pointer

I ITERATE_BY_REGION0
I Always uses repeated *_GET_REGION chunks

I ITERATE_BY_REGION_PARTIAL(|0)

I Same as above but specify starting position and count



ALTREP-Safe Full Data Access
(include/R_ext/Itermacros.h)

I ITERATE_BY_REGION
I Grabs full dataptr if possible via *_OR_NULL
I Wraps repeated *_GET_REGION calls
I ALTREP safe
I Allows for efficient tight loop over region pointer

I ITERATE_BY_REGION0
I Always uses repeated *_GET_REGION chunks

I ITERATE_BY_REGION_PARTIAL(|0)
I Same as above but specify starting position and count



An Example - which Internals
(Part of) the C code implementing the which R function:

int ioffset = 1;
int *buf = (int *) R_alloc(len, sizeof(int));
/* use iteration macros to be ALTREP safe <snip> */
ITERATE_BY_REGION(v, ptr, idx, nb, int, LOGICAL, {

for(int i = 0; i < nb; i++) {
if(ptr[i] == TRUE) {

buf[j] = ioffset + i; // offset has +1 built in
j++;

}

}
ioffset += nb; // move to beginning of next buffer

});

len = j;
// buf has ints in it and we're returning ints, <snip>
PROTECT(ans = allocVector(INTSXP, len));
if(len) memcpy(INTEGER(ans), buf, sizeof(int) * len);
}



Example ALTREP packages

https://github.com/ALTREP-examples

https://github.com/ALTREP-examples


Acknowledgements

I Luke Tierney
I Michael Lawrence
I Tomas Kalibera
I Mike Smith and Bioc Devel Forum
I You



Full List of ALTREP Methods



ALTREP Class Methods (All ALTREP Types)

I UnserializeEX
I Unserialize
I Serialized_state
I DuplicateEX
I Duplicate
I Coerce
I Inspect
I Length



ALTVEC Class Methods (Vectors)

ALTREP methods, plus

I Dataptr
I Dataptr_or_null
I Extract_subset



ALTINTEGER, ALTREAL Class Methods

ALTVEC methods, plus

I Elt
I Get_region
I Is_sorted
I No_NA
I Sum
I Min
I Max



ALTLOGICAL Class Methods

ALTVEC methods, plus

I Elt
I Get_region
I Is_sorted
I No_NA
I Sum



ALTRAW/ALTCOMPLEX Class Methods

ALTVEC methods, plus

I Elt
I Get_region



ALTSTRING

ALTVEC methods, plus

I Elt
I Set_elt
I Is_sorted
I No_NA


	The Year: R v0-3.4 (1997- 2018)
	An Incomplete History of (Not) Duplicating Data in R < 3.6.0
	This Worked Well, Obviously
	The Idea of ALTREP
	The Deets
	How R Internals Interact With Vectors
	Select ALTREP Class Methods
	R Internal Data Access API
	Full List of ALTREP Methods

