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Robust topics

Median => middle

MAD => spread

Spearman => association

Wilcoxon rank test => group diffs
Weighted least squares

Cook's distance => observation influence
M-estimators => framework for estimation



What do we mean by robust?

e “robustto outliers”

e “robust to misspecification of the model”

e Low variance (“precise”), low bias (“accurate”)

e Accuracy (TP+TN/total), precision (1-FDR), sensitivity (TPR),
specificity (1-FPR)



What do we mean by outlier?

Frequency
0 246 8

e Technical error?

o Dataentryerror?
e Unaccounted for tail of data distribution?



How do most statistics work



Median

dat <- matrix(rnorm(5+*1le5),ncol=5)
means <- rowMeans (dat)
medians <- apply(dat,l,median)

means
medians
-- data
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Efficiency

sd(medians)/sd(means)

[1] 1.197183



Median for non-normal data

dat <- cbind(matrix(rnorm(19+*1le5,sd=1),ncol=19),
matrix(rnorm(l*le5,sd=10),ncol=1))

means <- rowMeans (dat)

medians <- apply(dat,l,median)

means
medians
-- data
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Trimmed mean for non-normal data

dat <- cbind(matrix(rnorm(19+*1le5,sd=1),ncol=19),
matrix(rnorm(l*le5,sd=10),ncol=1))

means <- rowMeans (dat)

# trim 5% from each end = 10% of data

tmeans <- apply(dat,l,mean,trim=.05)

means
trimmed means
-- data
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MAD: median absolute deviation
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Median absolute deviation & SD

MAD
3




sds <- apply(dat,l,sd)

Efficiency of MAD

dat <- matrix(rnorm(20*1e5),ncol=20)

mads <- apply(dat,1l,mad)
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MAD with outliers

dat <- cbind(matrix(rnorm(19+*le5,sd=1),ncol=19),
matrix(rnorm(l*le5,sd=10),ncol=1))

sds <- apply(dat,1l,sd)

mads <- apply(dat,1l,mad)

1.5

7 1 sample SD
MAD

1.0

Density

0.5
1

0.0
|




Spearman correlation

+ |less sensitive to outliers

- all subregions of range count equally



Spearman correlation
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Spearman correlation
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Spearman correlation

e Drugresistanceincell lines

o (Gene expression

data ranks
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Wilcoxon / Mann-Whitney rank test

W <-0

for (i in seq along(x)) {
W <- W+ sum(y <= x[1])
}

print (W)

[1] 211



Wilcoxon vs t-test p distribution (n=20)

Wilcoxon t-test
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Wilcoxon vs t-test sensitivity (SD=1, n=4)
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Wilcoxon for small sample size

wilcox.test(x=101:103, y=1:3)

Wilcoxon rank sum test

data: 101:103 and 1:3

W =9, p-value = 0.1

alternative hypothesis: true location shift is
not equal to 0



Weighted least squares

50 100 150 200 250

0

| J,LH,,%J,\LJT |

T T T T
0 20 40 60 80 100
X



Weighted least squares

unweighted
=] oracle weighted
™
=
T o
n =
& o
@
- o
<
© T T T
0.0 0.5 1.0 1.5 2.0

estimate of beta



Cook’s distance

@]

fitl fit2

(Intercept) 0.06755603 -0.006076753

X

0.59821827 -0.056409684



Cook’s distance

dfbeta(fitl)[1,"x"]
[1] 0.654628
coef (fitl)[2] - coef(fit2)([2]

X
0.654628



Cook’s distance

cooksD <- cooks.distance(fitl)

cooksD




M-estimators

Gl



M-estimators

e M-estimators are a generalized framework for estimation
o M for Maximum likelihood-type estimation

e |eastsquares is amaximum likelihood estimate for data with
normally-distributed error.



MLE reminder

theta <- seq(-5,5,.1)
plot(theta, dnorm(theta,log=TRUE))

dnorm{(theta, log = TRUE)
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Theory of estimation

It is interesting to look back to the very origin of the theory of
estimation, namely to Gauss and his theory of least squares.
Gauss was fully aware that his main reason for assuming an

underlying normal distribution and a quadratic loss function

was mathematical, i.e., .Inlater
times, this was often forgotten, partly because of the central
limit theorem.




Theory of estimation

However, if one wants to be honest, the central limit theorem
can at most explain why many distributions occurring in
practice are approximately normal. The stress is on the word
“approximately.’ This raises a question which could have been

asked already by Gauss, but which was, as far as | know, only
raised a few years ago (notably by Tukey):

2
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M-estimators

library(MASS)
rob.fit <- rlm(y -~ x)
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Links on robust statistics in genomics

e SAMseq's implementation of rank test
= sequencing depth
= noise of low counts
= falsediscoveryrate
o voomweighted linear model
¢ edgeR and limma-voom sample quality weights
o DESeg2 use of Cook's distance


http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605138/
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-2-r29
http://nar.oxfordjournals.org/content/42/11/e91
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551905/
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8

