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Gene-level read counts
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What can we do?

• Consider another abundance unit that better 
reflects the underlying abundances (“number of 
transcript molecules”) 

• Include “adjustment” of gene counts to reflect 
underlying isoform composition
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• Consider another abundance unit that better 
reflects the underlying abundances (“number of 
transcript molecules”) 

• Include “adjustment” of gene counts to reflect 
underlying isoform composition

What can we do?

How can we get  
such values? 

How could such 
adjustment be done?

Are they any good?

We need transcript-level 

information!
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• Similar to correction factors for library size, but sample- 
and gene-specific 

• Weighted average of transcript lengths, weighted by 
estimated abundances (TPMs) 

• Average transcript length for gene g in sample s:

Offsets (“average transcript lengths”)

ATLgs =

X

i2g

✓is¯`is,
X

i2g

✓is = 1

¯`is = e↵ective length of isoform i (in sample s)
✓is = relative abundance of isoform i in sample s



length = L

length = 2L

T1

T2

Average transcript lengths

ATLg1 = 1 · L+ 0 · 2L = L

ATLg2 = 0 · L+ 1 · 2L = 2L



length = L

length = 2L

T1

T2

Average transcript lengths

ATLg2 = 0.5 · L+ 0.5 · 2L = 1.5L

ATLg1 = 0.75 · L+ 0.25 · 2L = 1.25L
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• Does not provide “full” alignment information (i.e., 
no exact base-by-base alignment). 

• Rather, finds all transcripts (and positions) that a 
read is compatible with. 

• Comes in various flavors: 
• pseudoalignment (kallisto) 
• lightweight alignment (Salmon) 
• quasimapping (Sailfish, RapMap)

The “mapping” step

Bray et al. 2016; Patro et al. 2014; Patro et al. 2015; Srivastava et al. 2016



• Input: for each read, the “equivalence class” of 
compatible transcripts 

• Probabilistic modeling of read generation process, 
with transcript abundance as parameter 

• EM algorithm  

• Output: estimated abundance of each transcript

The “estimation” step



Step 1: build transcriptome index
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Salmon
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Where to find transcript fasta?
www.ensembl.org/info/data/ftp/index.html

http://www.ensembl.org/info/data/ftp/index.html


Where to find transcript fasta?
www.ensembl.org/info/data/ftp/index.html

reference files for alignment-based workflow

http://www.ensembl.org/info/data/ftp/index.html


Step 2: quantify

kallisto

Salmon

name of index

output folder

number  
of cores

name of index

input fastq files

# bootstraps
number of cores input fastq files

libtype

output folder # bootstraps



Salmon LIBTYPE argument
http://salmon.readthedocs.io/en/latest/salmon.html#what-s-this-libtype

http://salmon.readthedocs.io/en/latest/salmon.html#what-s-this-libtype
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output

kallisto

Salmon

[abundance.tsv]

[quant.sf]



Comparison to traditional workflow

Salmon/kallisto…  

• … are considerably faster than traditional alignment
+counting -> allow bootstrapping 

• … provide more highly resolved estimates 
(transcripts rather than gene) - can be aggregated to 
gene level 

• … can use a larger fraction of the reads 

• … don’t give precise alignments (for e.g. visualization 
in genome browser) - but avoid large alignment files



kallisto and Salmon gene counts overall similar
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Gene-level counts mostly similar to traditional approach
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kallisto and Salmon can use slightly more reads
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How to get the estimated values into R?
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How to get the estimated values into R?

TPMs

counts

“ATL” 
offsets



• Abundance estimates for 
lowly expressed 
transcripts are highly 
variable and should be 
interpreted with caution
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• Problematic when coverage of region defining 
an isoform is low

A word of warning

Soneson, Love & Robinson, F1000 Research 2016



• When aggregated to the 
gene level, abundance 
estimates are less variable
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Differential analysis types for RNA-seq

• Has the total output of a gene changed? DGE 

• Has the expression of individual transcripts 
changed? DTE 

• Has any isoform of a given gene changed? DTE+G 

• Has the isoform composition for a given gene 
changed? DTU/DEU  

- need different abundance quantification of 
transcriptomic features (genes, transcripts, exons)
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