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Trapnell et al. 2013 Nat Biotech
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Transcriptome analysis of human tissues and cell
lines reveals one dominant transcript per gene

Mar Gonzalez-Porta', Adam Frankish? Johan Rung', Jennifer Harrow? and Alvis Brazma'~
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edgeR, DESeq cufflinks, cuffdiff Trinity
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v Figure 1 Overview of Trinity. (@) Inchworm assembles the read data set (short black lines, top) by
Additional sanity greedily searching for paths in a k-mer graph (middle), resulting in a collection of linear contigs (color
lines, bottom), with each k-mer present only once in the contigs. (b) Chrysalis pools contigs (colored
checks lines) if they share at least one k— 1-mer and if reads span the junction between contigs, and then it

builds individual de Bruijn graphs from each pool. (c) Butterfly takes each de Bruijn graph from Chrysalis
(top), and trims spurious edges and compacts linear paths (middle). It then reconciles the graph with
reads (dashed colored arrows, bottom) and pairs (not shown), and outputs one linear sequence for each
splice form and/or paralogous transcript represented in the graph (bottom, colored sequences).

Nature Protocols September 2013 (preprint
at http://arxiv.org/pdf/1302.3685v3.pdf)




University of
Zurich™

Institute of Molecular Life Sciences

Counting: a few considerations (gene-level)

All the downstream statistical
methods start with a count table.

- annotation-based? What about
novel genes?

- gene-level versus transcript-
level? versus exon-level?

- ambiguities

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html

Mark D. Robinson, IMLS, bio
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Sampling reads from population of
DNA fragment is multinomial
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For a single gene, it’s a coin toss,
i.e. Binomial

<~

Library 1

Y. ~ Binomial( M, A, )

Y. - observed number of reads for gene i
M - total number of sequences
A - proportion

Large M, small A. > approximated well by Poisson( Y, = MeA.)



University of
Zurich™

Institute of Molecular Life Sciences

Technical replication versus biological
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Mean-Variance plots: What we see in real data

Technical replicates Biological replicates

1e+02 1e+04 1e+06

Variance

1e+00

I I 1 | | | [ |

1 10 100 1000 10000 1 100 nonon
Mean Mean
mean=variance
Data from Marioni et al. Genome Research 2008 Data from Parikh et al. (Poisson assumption)

Genome Biology 2010
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Normalization: “Composition” or
“Diversity” can affect read depth
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M; = library size
A ; = relative abundance of
feature i

Poisson describes technical variation:
mean(Y;)= variance(Y;) = M, * 4,

Negative binomial models biological variability using the dispersion
parameter o:

Yij ~ NB( )uij:Mj * Aij , ;)
Same mean, variance is quadratic in the mean:

variance( Y; )= #; (1 + 1y @)

Critical parameter to estimate: dispersion
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Response: negative binomial with dispersion
fixed (to make it in the exponential family).

Link function (relate mean of response to linear
combination of parameters)

For example:

Y, ~ NB(M‘, ¢> X — design matrix

| In() - link function
XB=1In(u) A — parameters

Applicability to a wide range of designs

McCarthy et al. 2012,

NAR
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 Converts discrete
counts to (log-cpm)

1.0

e Removes trend in the
variance of counts

0.5
|

e Estimate variances and
use inverse as weight

sqrt residual std dev (log2 count)

T T T T
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mean (log2 count)

Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Law et al.
2014. Genome Biology.2014, 15:R29.

(slide from Charity Law)
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Beyond differential expression: differential
splicing

Prediction of alternative isoforms from exon CGl-41
expression levels in RNA-Seq experiments
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Sex-specific and lineage-specific alternative splicing
. . g
in primates 2
Ran Blekhman,'*> John C. Marioni,'**® Paul Zumbo,? Matthew Stephens,'-*>
and Yoav Gilad'* T ' ' T ‘
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Counting: a few considerations (exon-level)

Figure 1. Flattening of gene models: This (fictional) gene has three
annotated transcripts involving three exons (light shading), one of which
has alternative boundaries. We form counting bins (dark shaded boxes)
from the exons as depicted; the exon of variable length gets split into two
bins.

Anders et al. 2012 Genome Research

Mark D. Robinson, IMLS, UZH Page 18
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DEXSeq — general structure

We use generalized linear models (GLMs) (McCullagh and Nelder
1989) to model read counts. Specifically, we assume Kjj; to follow
a negative binomial (NB) distribution:

Kij; ~ NB (mean = Sjp, dispersion = a,-l) : (1)

where «;; is the dispersion parameter (a measure of the distribu-
tion’s spread; see below) for counting bin (i, /), and the mean is
predicted via a log-linear model as

log i =B; +Bj; +,31%. +,3£,(].:1- (2)
I —gene
J—sample ... p; is condition (categorical)
/= bin Method

BE — “exon” (bin) effect RNA-seq data
BC — condition effect Simon Anders,'? Alejandro Reyes,' and Wolfgang Huber

BEC — condition x “exon” interaction

Mark D. Robinson, IMLS, UZH Page 19
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