
Lab: Annotation and meta-data

Robert Gentleman

June 3, 2005

Introduction

In this lab we will see how to use different data packages to provide meaning to our analyses
and how to generate hyper-linked output. The basic premise is that we have obtained a
list of genes (probes) that are of interest and we will use the available meta-data to better
interpret them.

Our data

First load the Biobase package and then the data set ALL.

> library("Biobase")

Welcome to Bioconductor

Vignettes contain introductory material. To view,

simply type: openVignette()

For details on reading vignettes, see

the openVignette help page.

> library("ALL")

> library("hgu95av2")

> library("annotate")

> data(ALL)

The ALL data set has 128 samples. We will consider only a smaller subset. Our goal will
be to compare those with ALL1/AF4 to those with BCR/ABL, these two phenotypes arise
due to two different translocations. The first between chromosomes 4 and 11 and the second
between chromosomes 9 and 22. This leaves us with 47 cases

> ALLs1 = ALL[, ALL$mol.biol == "ALL1/AF4" | ALL$mol.biol == "BCR/ABL"]
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Next we will do some non-specific filtering to remove genes that do not show much variation
in expression levels across samples. We have set a rather arbitrary requirement on the level
of the IQR. You might want to experiment with that and see if the output changes very
much. You could also filter on other criteria, but we have found that filtering for variability
seems to be a reasonable criteria for reducing the set of genes to a reasonable number.

> library(genefilter)

Loading required package: survival

Loading required package: splines

> f1 <- function(x) (IQR(x) > 0.8)

> ff <- filterfun(f1)

> selected <- genefilter(ALLs1, ff)

> sum(selected)

[1] 1697

> ALLs2 <- ALLs1[selected, ]

So we will now analyze these data. Our first step is to use multtest to carry out a two group
comparison. But we note that many other options are available, but our interest here is to
get a sensible gene list and to subsequently use that to demonstrate the use of the different
meta-data packages. This is also why we set the parameter B in the code below to be so
low.

> library(multtest)

> cl <- as.numeric(ALLs2$mol == "BCR/ABL")

> resT <- mt.maxT(exprs(ALLs2), classlabel = cl, B = 1000)

> ord <- order(resT$index)

> rawp <- resT$rawp[ord]

> names(rawp) <- geneNames(ALLs2)

> sum(resT$adjp < 0.05)

We see that there are a number of genes with different expression values in these two subsets
(157). Our goal now is to see if we can provide some interpretation for the genes that were
selected.

> ALLs3 = ALLs2[resT$index[resT$adjp < 0.05], ]

> myLLs = unlist(mget(geneNames(ALLs3), hgu95av2LOCUSID))

> sum(duplicated(myLLs))

[1] 20

Let’s look at a heatmap to get some idea of how well these genes separate the two groups.
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> hm1 = heatmap(exprs(ALLs3), ColSide = ifelse(ALLs3$mol == "ALL1/AF4",

+ "red", "blue"), col = topo.colors(15), keep.dendro = TRUE)
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Now we we have asked to keep the row and column dendrograms so that we can try to make
some sense out of the genes that we have found. We see that there are roughly five interesting
groups of genes.
So we want to cut the dendrogram into five pieces. The easiest way to decide where to cut
the dendrogram is to plot it separately.

> plot(hm1$Rowv)
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We then see that
it is fairly easy to split this dendrogram into four pieces by cutting it at the level of about
25.

> cdend = cut(hm1$Rowv, h = 25)

> dendlabs = lapply(cdend$lower, labels)

> dendlabs[[1]]

[1] "37420_i_at" "1461_at" "41745_at" "676_g_at" "38833_at"

[6] "38095_i_at" "31870_at" "37967_at" "32378_at" "41215_s_at"

[11] "37043_at" "1389_at" "675_at" "38096_f_at" "37344_at"

[16] "36795_at"

We have now extracted the dendrogram labels, for these four groups.

Exercise 1
Use some of the basic functionality in the annaffy package to produce HTML output describ-
ing the genes in each of these groups separately. What sorts of things can you find out about
them? You may want to concentrate on just one of the four lists and do a more in-depth
study.
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Exercise 2
Optional: Identify the small group of genes that are obvious in the plot, but which we did
not extract. Can you say anything about them?

We might also be interested in whether the genes within one of these groups show some sort
of correlated expression. You could start by computing pairwise distances (or correlations)
between the genes. It might also make some sense to examine pairwise scatter plots (for
groups of genes that are relatively small. A last consideration is to examine multi-dimensional
scaling (on the genes). Our goal is to see whether or not we can reduce the number of genes
in each set.

Multiple probe sets per gene

The annotation package hgu95av2 provides information about the genes represented on
the array, including LocusLink identifiers (http://www.ncbi.nlm.nih.gov/EntrezGene), Uni-
gene cluster identifiers, gene names, chromosomal location, Gene Ontology classification,
and pathway associations. While the term gene has many aspects and can mean different
things to different people, we operationalize it by identifying it with entries in the LocusLink
database. One problem that does arise is that some genes are represented by multiple probe
sets on the chip. The multiplicities for the HGU95AV2 chip are shown in the following table.

Multiplicity 1 2 3 4 5 6 7 8 9

No. LocusLink IDs 6630 1596 513 139 28 19 10 10 2

This leads to a number of complications, as we discuss in the following. Of the 2317 Lo-
cusLink IDs that have more than one probe set annotated at them, we found that in 85 cases
our nonspecific filtering step of Section ?? selected some, but not all corresponding probe
sets.

Exercise 3
Select some pairs of duplicated (or triplicated) probe sets and plot the expression values
against each other. Compute the correlations between all duplicated (I suggest only those
the slen1=2) probe sets and draw a histogram.

Categories and over-representation

A bit later in this exercise we will consider using data from the Gene Ontology (GO) to try
to make some sense out of the selected genes. In this section we first address a more general
question. Suppose that you can divide your data into k groups (for example k might be 24
and represent chromosomes in humans).
We can also consider the approach we took above as dividing the genes into two groups;
those that are interesting (have low p-values) and those that are not. Using these two
categorizations simultaneously gives us a two-way table. There are many different tests for
association in two way tables, Pearson’s χ2 test, chisq.test or Fisher’s exact test, fisher.test,
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among them. Before trying the next two exercises read to the end of this section as some
help is given on obtaining the different quantities you need.

Exercise 4
Use these two tests, chisq.test and fisher.test, to determine if there is an association between
being selected and being on a particular chromosome. If so, explain which chromosomes
seem to be involved.
Be careful, what does it mean to be selected? What is your reference population? Make sure
that you are clear about what hypothesis you are testing.
How will you deal with Entrez gene IDs that have multiple probe sets mapped to them?

An alternate approach that seems to be widely used, but is generally inappropriate is to make
each comparison separately. This is usually done using a Hypergeometric sampling paradigm
(genes are either on a specific chromosome or not, and they are either interesting or not),
but that is exactly the same thing as using Fisher’s test for the corresponding two-way table.

Exercise 5
Use either a Hypergeometric calculation or Fisher’s exact test to consider each chromosome
separately. How do these results compare with those found above. Report the per chromo-
some summary statistics. If any p-values are significant, explain whether there are more, or
fewer genes than you would expect by chance?
Use the same criteria, as you used for the preceding exercise to determine which comparisons
to make.

For any chromosome, the first thing that we need to do is to compute all genes that map to
the chromosome. Next we need to count the number in our data set that also mapped to the
chromosome. And those two numbers, together with the number of unique LocusLink IDs
form the basis for our Hypergeometric calculation. We carry this out for Chromosome 1.

> chrs = as.list(hgu95av2CHR)

> table(sapply(chrs, length))

1

12625

> chr1 = sapply(chrs, function(x) x[1])

> table(chr1)

chr1

1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 3

1243 452 705 703 222 418 354 506 728 174 755 815 313 148 362 667

4 5 6 7 8 9 V X X|Y Y

453 531 733 590 428 422 4 495 15 25

> onC1 = (chr1 == "1")

> onC1[is.na(onC1)] = FALSE

> sum(onC1)
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[1] 1243

> lls = unlist(as.list(hgu95av2LOCUSID))

> badll = duplicated(lls)

> badllnames = names(badll)

> onC1unique = onC1 & !badll

> myLLunique = !duplicated(unlist(mget(geneNames(ALLs3), hgu95av2LOCUSID)))

> myCr = unlist(mget(geneNames(ALLs3), hgu95av2CHR))

> myC1 = (myCr == "1")

> myC1[is.na(myC1)] = FALSE

> myC1unique = myC1 & myLLunique

So now we have a Hypergeometric distribution with x = 13, m = 932, n = 8948, and
k = 137. We want to compute the probability that x is as large, or larger than, the observed
x.
In most cases our interest will not really focus on whole chromosomes but rather on particular
regions of chromosomes. Consider how to make use of the approach discussed here using
cytochrome band information.

Working with GO

The package GOstats has some of the necessary functionality built in. In particular the
function GOHyperG will compute the Hypergeometric p-values for over-representation of
genes at all GO terms in the induced GO graph.
The induced GO graph is the GO graph that results from taking the union of the most
extreme set of GO terms for each selected gene and then including all less specific terms that
are joined by an edge to a selected term. This is repeated until the root node is reached.
While one is certainly performing a number of hypothesis tests the method for adjusting
them is not straight forward. The tests are not independent, they p-values are related to
the size of the node (number of LLIDs annotated there) and the sampling distribution is
not clear - hence the appropriate method of adjustment is also not clear. Despite this many
people do use FDR, or similar, adjustments. I tend to use unadjusted p-values.

> library("GOstats")

Loading required package: graph

Loading required package: cluster

Loading required package: Ruuid

Loading required package: GO

Loading required package: RBGL

Loading required package: xtable

Attaching package: ’xtable’
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The following object(s) are masked from package:graph :

label

> library("Rgraphviz")

> mfhyper = GOHyperG(myLLs[myLLunique])

We now will set things up to plot this graph, if you are using Windows you won’t be able to
plot the graph (yet), since Rgraphviz does not currently work on Windows.

> whGO = resT$index[resT$adjp < 0.05]

> gNsel <- geneNames(ALLs2)[whGO]

> if (as.integer(R.version$major) < 2) {

+ gNLL2 = unique(gNsel)

+ gGO <- makeGOGraph(gNLL2, "MF", "hgu95av2")

+ } else {

+ gNLL = unlist(mget(gNsel, hgu95av2LOCUSID, ifnotfound = "NA"))

+ gNLL2 = as.character(unique(gNLL))

+ gNLL2 = gNLL2[!is.na(gNLL2)]

+ gGO <- makeGOGraph(gNLL2, "MF", TRUE)

+ }

> nL <- rep("", length(nodes(gGO)))

> names(nL) <- nodes(gGO)

> nA <- list()

> gGhyp.pv <- mfhyper$pv[nodes(gGO)]

> gCols <- ifelse(gGhyp.pv < 0.1, "tomato", "lightblue")

> names(gCols) = names(gGhyp.pv)

> lbs = rep("", length(nodes(gGO)))

> names(lbs) = nodes(gGO)

> nA$label = lbs

> nA$fillcolor = gCols

Exercise 6
Answer the following questions, you should look at the manual page for GOHyperG to see
what structure is returned.

• How many tests were carried out? How many were significant? [Hint: lapply and sapply
will be useful.

• Which nodes are significant? Is there a pattern?
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Figure 1: GO graph for ALL1/AF4 - BCR/ABL comparison
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Using GO for similarity

In some settings we want to identify sets of genes that have some degree of similarity. GO
can be used to define a measure of similarity. For any gene, g, we label the induced GO
graph Gg. There will be a different GO graph for each ontology. The GO graph can be
computed using oneGOGraph.
Some specific GO terms and their meanings (you might find them helpful). You might want
to exclude some (or all) from different computations that you are making.

• GO:0003673 is the GO root.

• GO:0000004 is biological process unknown

• GO:0005554 is molecular function unknown

• GO:0008372 is cellular component unknown

We first get all the MF terms for our Affymetrix data. We do this by first turning the hash
table into a list and then extracting from that list the set of GO terms that have an MF
label (as mentioned in lecture you might also want to only choose those with a particular
evidence code).

> affyMF = eapply(hgu95av2GO, function(x) {

+ onts = sapply(x, function(z) z$Ontology)

+ if (is.null(onts) || is.na(onts))

+ NA

+ else unique(names(onts)[onts == "MF"])

+ })

Here is a problem: how many of these genes (probes) have multiple GO terms associated
with them? What do we do if we want to compare two genes that have multiple GO terms
associated with them?
Should we map the Affymetrix identifiers to GO terms or should we map LocusLink identi-
fiers?
Now, for any probe we can construct the GO graph, in this example we only use one Affy
ID, and leave it to you to extend this result to accommodate the general case.

> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 9113402 486.8 13046794 696.8 12387423 661.6

Vcells 17595209 134.3 32271657 246.3 32271657 246.3

> affyMF[5]
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$"738_at"

[1] "GO:0008253" "GO:0016787"

> ggs = lapply(affyMF[5], function(x) {

+ if (is.null(x))

+ return(NULL)

+ ans = NULL

+ for (i in 1:length(x)) {

+ tmp = oneGOGraph(x[i], GOMFPARENTS)

+ ans[[i]] = tmp

+ }

+ a1 = ans[[1]]

+ if (length(x) == 1)

+ return(a1)

+ for (j in 2:length(x)) a1 = join(a1, ans[[j]])

+ return(a1)

+ })

> ggs

$"738_at"

A graph with directed edges

Number of Nodes = 9

Number of Edges = 8

Suppose that there are M genes under consideration. For each pair of genes gi and gj and
for each ontology assign a measure of similarity as follows:

• find the set of common GO terms within an ontology, Sij

• find the depth, Dij of each term in Sij, where depth is distance to the root node
(number of edges)

• then the similarity measure is the maximum depth, Dij

The larger the depth the more similar the two genes are. They have a very specific GO term
in common, within that ontology.
One might use some sort of threshold based on the quantiles of Dij to identify closely related
genes.
Given a chip (a set of assayed genes) one can develop a collections of genes that are likely
to be highly related (or possibly interacting; sometimes this is called a predictome). It will
often make sense, especially if one is considering physical interaction to make use of the MF
and BP ontologies to define similarity and to then requires additionally a high similarity in
the CC ontology to ensure that the gene products are likely to be in the same place and
hence able to interact.
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To carry out these different operations we might want to use some of the tools that have
been produced in RBGL, graph and Rgraphviz. We will be spending a lot more time on these
later, but we introduce them now so that we can make better use of GO.
To find the distances we will use dijkstra.sp. To use that we must turn our directed graph
(that is what GO graphs are) into an undirected graph using ugraph.

> library("RBGL")

> dd1 = dijkstra.sp(ugraph(ggs[[1]]), "GO:0003674")

> max(dd1$distance)

[1] 7

> if (require(Rgraphviz) && interactive()) plot(ggs[[1]])

Exercise 7
Using the tools described here write a function to implement the gene similarity measure
described above.

An alternative way of assigning similarity measures would be to make use of some measure
of information content. The work of Lord et al (and others) will be relevant here.
Yet a third measure of GO similarity between two genes, for a specific ontology is to take
the cardinality of the terms that they have in common and divide it by the cardinality of
the union of the two graphs. In this case the word union is being used to mean, take all
nodes that appear in at least one of the graphs and all edges that appear in at least one of
the graphs.
So if we let Gi denote the induced GO graph for gene i and Gj denote the induced GO graph
for gene j, their intersection, Gi ∩Gj is the same as Sij above. Their union is Gi ∪Gj.

Exercise 8
• Using the tools described here implement this version of GO similarity.

• Compare the similarity measures obtained using this measure with those obtained using
the measure described above.
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